سفارش تبلیغ
صبا ویژن
اتوماسیون صنعتی نادین تِک ***** www.Nadintech.com
نوشته شده در تاریخ 91/11/17 ساعت 2:18 ع توسط نادین تِک


سنسورهای القائی سنسورهای بدون تماس هستند که تنها در مقابل فلزات عکس العمل نشان می دهند و می توانند فرمان مستقیم به رله ها، شیرهای برقی، سیستمهای اندازه گیری و مدارات کنترل الکتریکی (مانند PLC) ارسال نمایند.

 

اساس کار و ساختمان سنسورهای القائی

ساختمان این سنسورها از چهار طبقه تشکیل می شود: اسیلاتور، دمدولاتور، اشمیت تریگر، تقویت خروجی

هرگاه دو یا چند سنسور القائی در مجاورت هم و یا در مقابل هم نصب شوند، شرایط زیر باید رعایت شود:

الف) نحوه نصب سنسورهای القائی Flush:
سنسورهای (Flush (Shielded سنسورهائی هستند که قسمت حساس سنسور توسط پوسته فلزی محصور شده است. هرگاه دو یا چند عدد از این سنسورها همسطح روی بدنه فلزی دستگاه نصب شوند رعایت فواصل نصب الزامی می باشد.

ب) نحوه نصب سنسورهای القائی Non-Flush:
در سنسورهای (Non-Flush (UnShielded قسمت حساس سنسور خارج از پوسته فلزی آن می باشد. فاصله سوئیچینگ این نوع سنسورها بیشتر از سنسورهای Flush می باشد. اما فرکانس سوئیچینگ آن در مقایسه کمتر است.

ج) نحوه نصب سنسورهای القائی در مقابل هم:
هر گاه دو سنسور القائی در مقابل هم نصب شوند رعایت فاصله حداقل 6Sn الزامی می باشد

.

اسیلاتور:

قسمت اساسی این سنسورها از یک اسیلاتور با فرکانس بالا تشکیل یافته که می تواند توسط قطعات فلزی تحت تاثیر قرار گیرد. (توضیحات بیشتر در سایر مقالات سایت میکرو رایانه) این اسیلاتور باعث بوجود آمدن میدان الکترومغناطیسی در قسمت حساس سنسور می شود. نزدیک شدن یک قطعه فلزی باعث بوجود آمدن جریانهای گردابی در قطعه گردیده و این عمل سبب جذب انرژی میدان می شود و در نتیجه دامنه اسیلاتور کاهش می یابد. از آنجا که طبقه دمدلاتور، آشکارساز دامنه اسیلاتور است در نتیجه کاهش دامنه اسیلاتور توسط این قسمت به طبقه اشمیت تریگر منتقل می شود. کاهش دامنه اسیلاتور باعث فعال شدن خروجی اشمیت تریگر گردیده و این قسمت نیز به نوبه خود باعث تحریک طبقه خروجی می شود.

قطعه استاندارد:

یک قطعه مربعی شکل از فولاد ST37 است که از آن به منظور تست فاصله سوئیچینگ استفاده می شود. (استاندارد IEC947-5-2). ضخامت قطعه 1mm و طول ضلع این مربع در اندازه های زیر می تواند انتخاب شود.

1- به اندازه قطر سنسور

2- سه برابر فاصله سوئیچینگ نامی سنسور 3*Sn

ضرایب تصحیح:

فاصله سوئیچینگ با کوچکتر شدن ابعاد قطعه استاندارد و یا با بکارگیری فلز دیگری غیر از فولاد ST37 تغییر خواهد کرد. در زیر ضرایب تصحیح برای فلزات مختلف نشان داده شده است:

ضریب تصحیح (KM) برای فولاد ST37 برابر 1.0
ضریب تصحیح (KM) برای نیکل برابر 0.9
ضریب تصحیح (KM) برای برنج برابر 0.5
ضریب تصحیح (KM) برای مس برابر 0.45
ضریب تصحیح (KM) برای آلومینیوم برابر 0.4

به عنوان مثال هرگاه یک سنسور در مقابل فولاد از فاصله 10mm عمل سوئیچینگ را انجام دهد، همان سنسور در مقابل مس از فاصله 4.5mm عمل خواهد کرد.

فرکانس سوئیچینگ:

حداکثر تعداد قطع و وصل یک سنسور در یک ثانیه می باشد. (بر حسب Hz). این پارامتر طبق استاندارد DIN EN 50010 با شرایط زیر اندازه گرفته می شود:

فاصله سوئیچینگ Switching Distance) S):
فاصله بین قطعه استاندارد و سطح حساس سنسور به هنگام عمل سوئیچینگ می باشد. (استاندارد EN 50010)

فاصله سوئیچینگ نامی Nominal Switching Distance) Sn):
فاصله ای است که در حالت متعارف و بدون در نظر گرفتن پارامترهای متغیر از قبیل حرارت، ولتاژ تغذیه و غیره تعریف شده است.

فاصله سوئیچینگ موثر Effective Switching Distance) Sr):
فاصله سوئیچینگ تحت شرایط ولتاژ نامی و حرارت 20 درجه سلسیوس می باشد. در این حالت تلرانسها و پارامترهای متغیر نیز در نظر گرفته شده اند. 0.9Sn<1.1SN>

فاصله سوئیچینگ مفید Useful Switching Distance) Su):
فاصله ای است که در محدوده حرارت و ولتاژ مجاز، عمل سوئیچینگ انجام می شود. 0.81Sn<1.21SN

فاصله سوئیچینگ عملیاتی Operating Switching Distance) Sa):
فاصله ای است که تحت شرایط مجاز، عملکرد سنسور تضمین شده است. 0<0.81SN

هیسترزیس H:
فاصله بین نقطه وصل شدن (هنگام نزدیک شدن قطعه به سنسور) و نقطه قطع شدن (هنگام دورشدن قطعه از سنسور) می باشد. حداکثر این مقدار 10% مقدار نامی می باشد. (استاندارد EN 60947-5-2)

قابلیت تکرار Repeatability) R):
قابلیت تکرار فاصله سوئیچینگ مفید تحت ولتاژ تغذیه V و در شرایط زیر اندازه گیری می شود: حرارت محیط: 23 درجه سلسیوس؛ رطوبت محیط: 50 الی 70 درصد؛ زمان تست: 8 ساعت. (مقدار تلرانس برای این پارامتر طبق استاندارد EN 60947-5-2 حداکثر +-0.1Sr می باشد.)

پایداری حرارتی (Temperature Drift):
تغییرات فاصله موثر سوئیچینگ در اثر تغییرات دما طبق استاندارد EN 60947-5-2 و در محدوده دمای 20 درجه سلسیوس زیر صفر تا 60 درجه سلسیوس بالای صفر حداکثر 10% است.

حرارت محیط (Ambient Temperature) Ta:
محدوده حرارتی است که در آن محدوده، عملکرد سنسور تضمین شده است.

کلاس حفاظتی: (IP67 (DIN 40050

 



  



نوشته شده در تاریخ 91/11/17 ساعت 2:18 ع توسط نادین تِک


حسگر یا سنسور المان حس کننده ای است که کمیتهای فیزیکی مانند فشار، حرارت، رطوبت، دما، و ... را به کمیتهای الکتریکی پیوسته (آنالوگ) یا غیرپیوسته (دیجیتال) تبدیل می کند. در واقع آن یک وسیله الکتریکی است که تغییرات فیزیکی یا شیمیایی را اندازه گیری می کند و آن را به سیگنال الکتریکی تبدیل می نماید.

سنسورها در انواع دستگاههای اندازه گیری، سیستمهای کنترل آنالوگ و دیجیتال مانند PLC مورد استفاده قرار می گیرند. عملکرد سنسورها و قابلیت اتصال آنها به دستگاههای مختلف از جمله PLC باعث شده است که سنسور بخشی از اجزای جدا نشدنی دستگاه کنترل اتوماتیک و رباتیک باشد. (برای مطالعه بیشتر در مورد PLCها به سایر مقالات سایت میکرو رایانه در تالار گفتگو مراجعه نمایید)

سنسورها اطلاعات مختلف از وضعیت اجزای متحرک سیستم را به واحد کنترل ارسال نموده و باعث تغییر وضعیت عملکرد دستگاهها می شوند.

سنسورهای بدون تماس

سنسورهای بدون تماس سنسورهائی هستند که با نزدیک شدن یک قطعه وجود آن را حس کرده و فعال می شوند. این عمل به نحوی است که می تواند باعث جذب یک رله، کنتاکتور و یا ارسال سیگنال الکتریکی به طبقه ورودی یک سیستم گردد

 

مثال هایی از کاربرد سنسورها

1-شمارش تولید: سنسورهای القائی، خازنی و نوری

2-کنترل حرکت پارچه و ...: سنسور نوری و خازنی

3-کنترل سطح مخازن: سنسور نوری و خازنی و خازنی کنترل سطح

4-تشخیص پارگی ورق: سنسور نوری

5-کنترل انحراف پارچه: سنسور نوری و خازنی

6-کنترل تردد: سنسور نوری

7-اندازه گیری سرعت: سنسور القائی و خازنی

8-اندازه گیری فاصله قطعه: سنسور القائی آنالوگ

 

مزایای سنسورهای بدون تماس یا همجواری

سرعت سوئیچینگ زیاد:
سنسورها در مقایسه با کلیدهای مکانیکی از سرعت سوئیچینگ بالائی برخوردارند، به طوریکه برخی از آنها (سنسور القائی سرعت) با سرعت سوئیچینگ تا 25KHz کار می کنند.

طول عمر زیاد:
بدلیل نداشتن کنتاکت مکانیکی و عدم نفوذ آب، روغن، گرد و غبار و ... دارای طول عمر زیادی هستند.

عدم نیاز به نیرو و فشار:
با توجه به عملکرد سنسور هنگام نزدیک شدن قطعه، به نیرو و فشار نیازی نیست.

قابل استفاده در محیطهای مختلف با شرایط سخت کاری:
سنسورها در محیطهای با فشار زیاد، دمای بالا، اسیدی، روغنی، آب و ... قابل استفاده می باشند.

عدم ایجاد نویز در هنگام سوئیچینگ:
به دلیل استفاده از نیمه هادی ها در طبقه خروجی، نویزهای مزاحم (Bouncing Noise) ایجاد نمی شود. 

.



  



نوشته شده در تاریخ 91/11/17 ساعت 2:16 ع توسط نادین تِک


سنسور آلتراسونیک یا ماوراء صوت یکی دیگر از سنسورهای غیر تماسی و مجاورتی یا پراگسیمیتی میباشد در کاربردهای گوناگون آشکار سازی اجسام تا اندازه گیری فاصله یا سطح سنجی به کار میرود . به طور معمول سنسورهای آلتراسونیک با ارسال یک پالس صوتی کوتاه در فرکانس فراصوت به سمت هدفی که این پالس را منعکس میکند و دریافت و شناسائی این امواج به شکل یک ترانسیور عمل کرده و در مدلهائی که فاصله را محاسبه میکنند با اندازه گیری اختلاف زمانی ارسال و دریافت پالس میتوانند به فاصله یاب تبدیل شوند .

سنسور آلتراسونیک را در بازار به شکلهای گوناگون و برای کاربردهای مختلف میتوان یافت . سنسورهائی با نحوه مختلف نصب ، پیکربندی ، IP و فرکانس متفاوت . انتخاب سنسور آلتراسونیک مناسب جهت کاربرد مورد نظر نیاز به توجه به موارد زیر دارد :

 

  1. دقت و رزولوشن سنسور آلتراسونیک
  2. فاصله آشکارسازی یا اندازه گیری سنسور آلتراسونیک
  3. محدوده دمای کاری سنسور آلتراسونیک
  4. فرکانس یا طول موج کاری سنسور آلتراسونیک
  5. وجود نویز یا تلاطم در هدف یا محیط اندازه گیری سنسور آلتراسونیک
  6. نحوه نصب و محدودیت یا مانع مقابل سنسور آلتراسونیک

چکیده ای از چگونگی کار سنسور التراسونیک:

امواج التراسونیک به دسته­ای از امواج مکانیکی گفته می­شود که فرکانس نوسانشان بیش از محدوده شنوایی انسان 20KHz باشد.

یک سنسور التراسونیک غالبا دارای یک فرستنده و یک گیرنده امواج التراسونیک می باشد که این امواج بعد از برخورد با یک مانع منعکس  شده  و به طرف سنسور برمی گردند و با توجه به زمان بازگشت و همچنین کیفیت امواج بازتابش شده به فاکتورهاییهمچون فاصله تا مانع ، نوع مانع و سرعت مانع  دست پیدا می کنیم . لازم به ذکر است که هر ماده ای به یک کیفیت خاص امواج التراسونیک را از خود عبور و مقداری از آن را باز تابش می دهد...

فرکانسهای این محدوده را میتوان بین 40 کیلو هرتز تا چندین مگا هرتز در نظر گرفت.امواجی با این فرکانسها که کاربردهایی چون سنجش میزان فاصله،سنجش میزان عمق یک مخزن،تعیین فشار خون یک بیمار،همگن کردن مواد مذاب،استفاده در دریلها جهت ایجاد ضربه و کارائی بیشتر دریل،تست قطعات صنعتی از نظر کیفی جهت تشخیص شکافها و سوراخهای ریز و غیره اشاره کرد.

جهت استفاده از این امواج یک سری سنسورهای مخصوص طراحی شده که میتوان این سنسورها را به دو دسته صنعتی و غیر صنعتی تقسیم بندی کرد.سنسورهای غیر صنعتی در فرکانسهایی در حدود 40 کیلو هرتز کار میکنند و در بازار با قیمتهای پایین در دسترس هستند. در این سنسورها دقت کار بالا نبود و فقط در حد تشخیص یک فاصله یا عمق یک مایع میتوان از آنها استفاده کرد.اما در سنسورهای صنعتی که در فرکانسهای در حد مگا هرتز کار میکنند به دلیل همین فرکانس بالا ما دقت زیادی را خواهیم داشت.



  



نوشته شده در تاریخ 91/11/17 ساعت 2:15 ع توسط نادین تِک


آیا تا به حال شده است که در جایی نوشته باشند:قدرت موتور:450 اسب بخار در 4800 دور در دقیقه است؟

آیا میدانید منظور از این کار چیست؟ 

برای سنجش و بدست آوردن قدرت موتور ماشین های مختلف از واحدی به نام اسب بخار استفاده می کنند.هر اسب بخار(hp مخفف horse power)برابر با 746 وات است.وقتی میگویند قدرت موتور450 اسب بخار در 4800 دور در دقیقه است یعنی مرحله ی چهارگانه ی  موتور در هر دقیقه 4800 بار انجام می شود و در این 4800 دور 450 اسب بخار یا 335700 وات نیرو تولید میشود 

هرچه قدرت موتور بیشتر باشد سرعت ماشین نیز بیشتر است . 

حال برویم سراغ گشتاور: 

گشتاور یا تورک(torque) بر اساس چرخش میل لنگ و تولید نیرو برای حرکت چرخ هاست.واحد آن پوند فوت در دور در دقیقه است.پوند فوت مقدار نیرویی است که بر اساس چرخش میل لنگ در یک دقیقه تولید شده و به چرخ ها فرستاده می شود.هرچه میل لنگ در یک دقیقه بیشتر بچرخد نیروی بیشتری به چرخ ها وارد شده و سرعت ماشین نیز بیشتر می شود 

 

چگونگی بدست آوردن اسب بخار: 

 

اگر بخواهید توان یک موتور را بدانید،باید موتور را به یک توان سنج (Dynamometer) وصل کنید. توان سنج باری را روی موتور قرار می دهد و توانی را که موتور در برابر بار تولید می کند را اندازه می گیرد.

ایده ی طرز کار توان سنج را می توان به این صورت درک کرد:تصور کنید موتوری را روشن کردید.و بدون آنکه باری روی آن باشد پدال گاز را فشار می دهید.در این حالت موتور آن قدر سریع می چرخد که از هم می پاشد. که این مناسب نیست بنابراین با یک توان سنج باری را بر موتور قرار می دهید و باری را که موتور در دور های مختلف می تواند تحمل کند را اندازه می گیرید.باید توان سنجی را به موتور وصل کنید،گاز دهید و با توان سنج بار روی موتور را تغییر دهید تا دور موتور مثلا روی 7000 دور بر دقیقه ثابت بماند.و در این دور،باری را که موتور می تواند تحمل کند را ثبت می کنید. سپس بار را زیاد تر کنید تا دور موتور مثلا به 6500 کاهش یابد و دوباره بار متناظر با این دور را ثبت کنید.و به همین ترتیب ادامه دهید.همچنین می توانید همین کارها را از 500 و 1000 دور به بالا انجام دهید.چیزی که توان سنج اندازه می گیرد در واقع گشتاور پیچشی است و برای تبدیل آن به اسب بخار باید گشتاور را در دور موتور ضرب کنید.



  



نوشته شده در تاریخ 91/11/17 ساعت 2:14 ع توسط نادین تِک


ر صنعت به تجهیزاتی که تعداد محدودی اطلاعات را در حافظه خود ثبت میکنند دیتا لاگر میگویند . اگرچه ثبات یا رکوردر به نوعی همان وظیفه دیتا لاگر را به عهده دارد ولی تفاوت عمده این دو تجهیز در امکانات مختلفی که یک رکوردر نظیر صفح? نمایش ، امکان اتصال به شبکه ، حافظه زیاد و ... دارد و دیتا لاگر از آنها بی بهره است میباشد .این تجهیزات معمولا کوچک و قابل حمل بوده و به وسیله باتری تغذیه می شوند به علاوه به یک ریزپردازنده مجهز بوده و دارای حافظه داخلی جهت ذخیره سازی داده و تعدادی حسگر می باشند.برخی از دیتالاگرها به رایانه متصل می شوند و می توان با استفاده از نرم افزار آنها را فعال کرده و داده های کنترل شده را مشاهده و تجزیه و تحلیل کرد

خصوصیات کلی دیتا لاگرهای

1- تعداد کانالها: تعداد کانالها بیانگر تعداد سنسورها و مبدلهایی است که هم‌زمان قابل اتصال به دیتالاگر هستند.

2- فرکانس نمونه برداری یا سمپل ریت : این عدد نشان دهنده تعداد دفعاتی است که دیتالاگر داده‌های هر سنسور را خوانده و به کامپیوتر یا حافظه منتقل می‌کند.

3- نوع سنسور قابل اتصال: معمولاً هر دیتالاگری سنسورها و مبدلهای خاصی را پشتیبانی می‌کند. مثلاً یک دیتالاگر ممکن است تنها قادر به پشتیبانی سنسورهای حرارتی RTD باشد ولی قادر به پشتیبانی ترموکوپلها نباشد.

معمولاً هر دیتالاگر مجهز به یک نرم افزار است که امکان اعمال تنظیمات آن و مشاهده نمودارهای بدست آمده از سنسورها را حین نمونه برداری ممکن می‌کند.

یک پارامتر اساسی در سیستم های دیتالاگر قابلیت ثبت اطلاعات برای مدت زمانی طولانی مثلاً چندین سال است.برای دست یابی به این هدف لازم است سیستم های دیتالاگر دارای رسانه‌های ذخیره سازی در حجم های بالا و مصرف انرژی بسیار کم باشند.

کاربرد دیتالاگر شامل موارد زیر می شود :

  • ثبت اطلاعات در ایستگاه هواشناسی بدون مراقبت (مانند سرعت باد/ و جهت باد، دما، رطوبت نسبی، تشعشعات خورشیدی).
  • ثبت اطلاعات در ایستگاه های بدون مراقبت هیدروگرافی (مانند سطح آب، عمق آب، جریان آب، pH آب، رسانایی آب)
  • ثبت اطلاعات خودکار رطوبت خاک
  • ثبت اطلاعات خودگار فشار گاز
  • اندازه گیری دما (رطوبت و ...) مواد فاسد شدنی در حین انتقال محموله

منبع: h



  





طراحی پوسته توسط تیم پارسی بلاگ