اتوماسیون صنعتی نادین تِک ***** www.Nadintech.com
طول ناحیه در قالب بزرگتر از حد مجاز
نوشته شده در تاریخ 91/12/13 ساعت 10:43 ص توسط نادین تِک


پالس اکسی متری pulse oximetry     چیست؟

چشم انسان برای تشخیص کم اکسیژنی خون بسیار ضعیف است . حتی در شرایط ایده آل ، پزشکان خبره نمی توانند کم اکسیژنی را تشخیص دهند مگر اینکه مقدار آن به مقدار 80% برسد . با آمدن پالس اکسی متر ، تحولی در تشخیص کم اکسیژنی خون رخ داد.

پالس اکسی متر هایی که اکنون استفاده می شوند دارای دو LED    می باشند .؛ یکی نوری با طول موج nm 660 (قرمز) و دیگری نوری به طول موج nm 940 (فروسرخ) ایجاد می کند. این دو نور به این دلیل استفاده می شود چون Hb  و O2Hb دارای طیف جذبی متفاوتی در این طول موج ای به خصوص خستند. در ناحیه   قرمز ، O2Hb نور کمتری نسبت به Hb جذب می کند و در ناحیه فروسرخ برعکس این قضیه رخ ی دهد. سپس نسبت این مقدیر جذبی  نسبت به اندازه گیری مستقیم مقدار اکسیژن اشباع شده در خون کالیبره می شود و سپس الگوریتم بدست آمده در میکرو پروسسوری دررون دستگاه پالس اکسی متر قرار داده می شود.در زمانی که از دستگاه استفاده می شود ، نمودار کالیبره شده برای تخمین میزان اکسیژن اشباع شده در خون استفاده می شود .

پروب بر رویی انگشتان گذاشته می شود . LED  ها از بالای پروب نور خود را می فرستند. در طرف دیگر LED ها  حسگر های نوری قرار دارند. دیود ها تقریبا 30 بار در ثانیه چشمک می زنند. دیود ها با یک ترتیب خاصی روشن و خاموش می شوند . و مدتی هر دو با هم خاموش هستند . در این مدت نور اطراف سنجیده میشود تا  مقدار نور LED تنظیم شود . میکرو پروسسور تغییرات نور را در هنگام جریان  ضربه ای  تحلیل می کند و سیگنال جریان های غیر ضربه ای را نادیده می گیرد.
همانطور که گفته شد، مقدار اشباع اکسیژن از جذب نور تکفاز(منوکروماتیک) توسط بافت ضربه ای سنجیده می
شود. این پدیده بر اساس قانون بییر-لمبرت  توجیه می شود:
قانون بییر می گوید: مقدار شدت نور ارسال شده با تغییر غلظت ماده ای که از درون آن فرستاده شده ، به صورت نمایی تغییر می کند.(
A=lnIo/I

که در آن A  مقدار جذب است . I  مقدار شدت نور عبوری است . و Io شدت نور اولیه است .
قانون لمبرت می گوید : شدت نور ارسالی از درون ماده ای ، با افزایش فاصله ای که نور از آن ماده عبور می کند به صورت نمایی کاهش می یابد.

نوری که توسط یک بافت غیر ضربه ای جذب می شود ثابت(DC) می باشد . جذب غیر یکنواخت (AC) در نتیجه ی ضربه های جریان خون ضربه ای است. حسگر نوری ولتاژی را متناسب با نورعبور کرده تولید می کند. قسمت متناوب موج ولتاژ دریافتی تقریبا 1- 5% آن را تشکیل می دهد . فرکانس بالای نور ارسالی دیود ها باعث می شوند که مقدار جذب به تعداد دفعات مکرر محاسبه شوند. این خود باعث شده که اثرات ناشی از حرکت کاهش  پیدا کنند.

منبع:http://saba.kntu.ac.ir



  



نوشته شده در تاریخ 91/12/13 ساعت 10:40 ص توسط نادین تِک


سنسورهای نوری

 استفاده از تکنولوژی فیبرنوری در اندازه گیری گازها مبنای علمی این مبحث است و اختصارا به حسگرهای optrodes  مشهور هستند .                                                   

شعاع نوری تولید شده در یک منبع از فیبر نوری عبور می کند و به ماده می رسد که در آن جذب و یا منعکس و یا پخش  می شود . ماده مذکور می تواند گازی باشد که مقدار و نوع آن  باید اندازه گیری شود .

به وسیله یک کابل فیبرنوری دیگر بخشی از نور وارد شده به فضای گاز به یک آشکارساز بر می گردد و به یک سیگنال الکتریکی تبدیل می شود . سادگی ساختمان و نداشتن الکترود مرجع و طیف گسترده کاری از نظر انواع گازها و مواد مورد اندازه گیری از امتیازات حسگر مذکور است . شایان ذکر است که یکی از موارد قابل توجه  استفاده از  این حسگر اندازه گیری مقدار اکسیژن موجود در خون است . حسگرهای پیشرفته تر با همان مبنای علمی امکان اندازه گیری PH,O2,CO2  را به صورت ساده مقدور می سازند .                                                  

 

برای اندازه گیری پیوسته فشار خون ضربان قلب و مقادیر O2,CO2  در خون  حسگری با تعدادی از فیبرهای نوری طراحی و در یک لوله قرار می گیرند . در انتهای دیگر لوله صفحه نازک با قابلیت ارتجاعی کافی با امکان  عبور گاز از بیرون به داخل حسگر نصب شده است . نور با طول موج 760nm , 2µm  برای اندازه گیری PH,O2,CO2  از طریق فیبرهای ورودی نور با اندازه گیری نور منعکس شده از طریق فیبرهای خروجی نور به اندیکاتور متصل می شود . 

منبع:http://saba.kntu.ac.ir



  



نوشته شده در تاریخ 91/12/13 ساعت 10:38 ص توسط نادین تِک


سنسورهای القائی

سنسورهای القائی سنسورهای بدون تماس هستند که تنها در مقابل فلزات عکس العمل نشان می دهند و می توانند فرمان مستقیم به رله ها، شیرهای برقی، سیستمهای اندازه گیری و مدارات کنترل الکتریکی *مانند: PLC *ارسال نمایند.

اساس کار و ساختمان سنسورهای القائی
ساختمان این سنسورها از چهار طبقه تشکیل می شود: اسیلاتور، دمدولاتور، اشمیت تریگر، تقویت خروجی. قسمت اساسی این سنسورها از یک اسیلاتور با فرکانس بالا تشکیل یافته که می تواند توسط قطعات فلزی تحت تاثیر قرار گیرد. این اسیلاتور باعث بوجود آمدن میدان الکترومغناطیسی در قسمت حساس سنسور می شود. نزدیک شدن یک قطعه فلزی باعث بوجود آمدن جریانهای گردابی در قطعه گردیده و این عمل سبب جذب انرژی میدان می شود و در نتیجه دامنه اسیلاتور کاهش می یابد. از آنجا که طبقه دمدلاتور، آشکارساز دامنه اسیلاتور است در نتیجه کاهش دامنه اسیلاتور توسط این قسمت به طبقه اشمیت تریگر منتقل می شود. کاهش دامنه اسیلاتور باعث فعال شدن خروجی اشمیت تریگر گردیده و این قسمت نیز به نوبه خود باعث تحریک طبقه خروجی می شود.

قطعه استاندارد: یک قطعه مربعی شکل از فولاد ST37 است که از آن بمنظور تست فاصله سوئیچینگ استفاده می شود. استاندارد IEC947-5-2 ضخامت قطعه 1mm و طول ضلع این مربع در اندازه های زیر می تواند انتخاب شود:

-
به اندازه قطر سنسور
-
سه برابر فاصله سوئیچینگ نامی سنسور 3*Sn


ضرایب تصحیح: فاصله سوئیچینگ با کوچکتر شدن ابعاد قطعه استاندارد و یا با بکارگیری فلز دیگری غیر از فولاد ST37 تغییر خواهد کرد. در جدول زیر ضرایب تصحیح برای فلزات مختلف نشان داده شده است.
ضریب تصحیح (KM) برای فولاد ST37 برابر 1.0
ضریب تصحیح (KM) برای نیکل برابر 0.9
ضریب تصحیح (KM) برای برنج برابر 0.5
ضریب تصحیح (KM) برای مس برابر 0.45
ضریب تصحیح (KM) برای آلومینیوم برابر 0.4

بعنوان مثال هرگاه یک سنسور در مقابل فولاد از فاصله 10mm عمل سوئیچینگ را انجام دهد، همان سنسور در مقابل مس از فاصله 4.5mm عمل خواهد کرد.

فرکانس سوئیچینگ: حداکثر تعداد قطع و وصل یک سنسور در یک ثانیه می باشد. بر حسب Hz این پارامتر طبق استاندارد DIN EN 50010 با شرایط زیر اندازه گرفته می شود:

فاصله سوئیچینگS(Switching Distance): فاصله بین قطعه استاندارد و سطح حساس سنسور به هنگام عمل سوئیچینگ می باشد.**استاندارد EN 50010**

فاصله سوئیچینگ نامیSn(Nominal Switching Distance): فاصله ای است که در حالت متعارف و بدون در نظر گرفتن پارامترهای متغیر از قبیل حرارت، ولتاژ تغذیه و غیره تعریف شده است.

فاصله سوئیچینگ موثر Sr (Effective Switching Distance): فاصله سوئیچینگ تحت شرایط ولتاژ نامی و حرارت 20 درجه سلسیوس می باشد. در این حالت تلرانسها و پارامترهای متغیر نیز در نظر گرفته شده اند. 0.9Sn

فاصله سوئیچینگ مفیدSu (Useful Switching Distance): فاصله ای است که در محدوده حرارت و ولتاژ مجاز، عمل سوئیچینگ انجام می شود. 0.81Sn


فاصله سوئیچینگ عملیاتیSa (Operating Switching Distance): فاصله ای است که تحت شرایط مجاز، عملکرد سنسور تضمین شده است. 0

هیسترزیسH: فاصله بین نقطه وصل شدن (هنگام نزدیک شدن قطعه به سنسور) و نقطه قطع شدن (هنگام دورشدن قطعه از سنسور) می باشد. حداکثر این مقدار 10% مقدار نامی می باشد. **استاندارد EN 60947-5-2**

قابلیت تکرارR (Repeatability): قابلیت تکرار فاصله سوئیچینگ مفید تحت ولتاژ تغذیه V و در شرایط زیر اندازه گیری می شود: حرارت محیط: 23 درجه سلسیوس؛ رطوبت محیط: 50 الی 70 درصد؛ زمان تست: 8 ساعت. (مقدار تلرانس برای این پارامتر طبق استاندارد EN 60947-5-2 حداکثر +-0.1Sr می باشد.(

پایداری حرارتی(Temperature Drift): تغییرات فاصله موثر سوئیچینگ در اثر تغییرات دما طبق استاندارد EN 60947-5-2 و در محدوده دمای 20 درجه سلسیوس زیر صفر تا 60 درجه سلسیوس بالای صفر حداکثر 10% است.

حرارت محیطTa (Ambient Temperature): محدوده حرارتی است که در آن محدوده، عملکرد سنسور تضمین شده است.

کلاس حفاظتی: IP67 (DIN 40050).
نحوه نصب سنسورهای القائی: هرگاه دو یا چند سنسور القائی در مجاورت هم و یا در مقابل هم نصب شوند، شرایط زیر باید رعایت شود:
الف) نحوه نصب سنسورهای القائی Flush: سنسورهای Flush (Shielded) سنسورهائی هستند که قسمت حساس سنسور توسط پوسته فلزی محصور شده است.

منبع:http://imageha.ir



  



نوشته شده در تاریخ 91/12/13 ساعت 10:36 ص توسط نادین تِک


سنسورها در ربات


سنسورها اغلب برای درک اطلاعات تماسی، تنشی، مجاورتی، بینایی و صوتی به‌کار می‌روند. عملکرد سنسورها بدین‌گونه است که با توجه به تغییرات فاکتوری که نسبت به آن حساس هستند،
سطوح ولتاژی ناچیزی را در پاسخ ایجاد می‌کنند، که با پردازش این سیگنال‌های الکتریکی می‌توان اطلاعات دریافتی را تفسیر کرده و برای تصمیم‌گیری‌های بعدی از آن‌ها استفاده نمود.

سنسورها را می‌توان از دیدگاه‌های مختلف به دسته‌های متفاوتی تقسیم کرد که در ذیل می‌آید:

a.
سنسور محیطی:این سنسورها اطلاعات را از محیط خارج و وضعیت اشیای اطراف ربات، دریافت می‌نمایند.

b.
سنسور بازخورد:این سنسور اطلاعات وضعیت ربات، از جمله موقعیت بازوها، سرعت حرکت و شتاب آن‌ها و نیروی وارد بر درایورها را دریافت می‌نمایند.

c.
سنسور فعال:این سنسورها هم گیرنده و هم فرستنده دارند و نحوه کار آن‌ها بدین ترتیب است که سیگنالی توسط سنسور ارسال و سپس دریافت می‌شود.

d.
سنسور غیرفعال:این سنسورها فقط گیرنده دارند و سیگنال ارسال شده از سوی منبعی خارجی را آشکار می‌کنند، به‌ ‌همین دلیل ارزان‌تر، ساده‌تر و دارای کارایی کمتر هستند.


سنسورها از لحاظ فاصله‌ای که با هدف مورد نظر باید داشته باشند به سه قسمت تقسیم می‌شوند: §سنسور تماسی: این نوع سنسورها در اتصالات مختلف محرک‌ها مخصوصا در عوامل نهایی یافت می‌شوند و به دو بخش قابل تفکیک‌اند.
i.
سنسورهای تشخیص تماس
ii.
سنسورهای نیرو-فشار


§
سنسورهای مجاورتی: این گروه مشابه سنسورهای تماسی هستند، اما در این مورد برای حس کردن لازم نیست حتما با شی در تماس باشد. عموما این سنسورها از نظر ساخت از نوع پیشین دشوارترند ولی سرعت و دقت بالاتری را در اختیار سیستم قرار می‌دهند.
دو روش عمده در استفاده از سنسورها وجود دارد:
i.
حس کردن استاتیک: در این روش محرک‌ها ثابت‌اند و حرکت‌هایی که صورت می‌گیرد بدون مراجعه لحظه‌ای به سنسورها صورت می‌گیرد.به عنوان مثال در این روش ابتدا موقعیت شی تشخیص داده می‌شود و سپس حرکت به سوی آن نقطه صورت می‌گیرد.
ii.
حس کردن حلقه بسته:در این روش بازوهای ربات در طول حرکت با توجه به اطلاعات سنسورها کنترل می‌شوند. اغلب سنسورها در سیستم‌های بینا این‌گونه‌اند.


حال از لحاظ کاربردی با نمونه‌هایی از انواع سنسورها در ربات آشنا می‌شویم:

a.
سنسورهای بدنه (Body Sensors) : این سنسورها اطلاعاتی را درباره موقعیت و مکانی که ربات در آن قرار داردفراهم می‌کنند. این اطلاعات نیز به کمک تغییر وضعیت‌هایی که در سوییچ‌ها حاصل می‌شود، به دست می‌آیند. با دریافت و پردازش اطلاعات بدست آمده ربات می‌تواند از شیب حرکت خود و این‌که به کدام سمت در حال حرکت است آگاه شود. در نهایت هم عکس‌العملی متناسب با ورودی دریافت شده از خود بروز می‌دهد.
b.
سنسور جهت‌یاب مغناطیسی(Direction Magnetic Field Sensor):با بهره‌گیری از خاصیت مغناطیسی زمین و میدان مغناطیسی قوی موجود، قطب‌نمای الکترونیکی هم ساخته شده است که می‌تواند اطلاعاتی را درباره جهت‌های مغناطیسی فراهم سازد. این امکانات به یک ربات کمک می‌کند تا بتواند از جهت حرکت خود آگاه شده و برای تداوم حرکت خود در جهتی خاص تصمصم‌گیری کند. این سنسورها دارای چهار خروجی می‌باشند که هرکدام مبین یکی از جهت‌ها است. البته با استفاده از یک منطق صحیح نیز می‌توان شناخت هشت جهت مغناطیسی را امکان‌پذیر ساخت.
c.
سنسورهای فشار و تماس (Touch and Pressure Sensors) : شبیه‌سازی حس لامسه انسان کاری دشوار به نظر می‌رسد. اما سنسورهای ساده‌ای وجود دارند که برای درک لمس و فشار مورد استفاده قرار می‌گیرند. از این سنسورها در جلوگیری از تصادفات و افتادن اتومبیل‌ها در دست‌اندازها استفاده می‌شود. این سنسورها در دست‌ها و بازوهای ربات‌ هم به منظورهای مختلفی استفاده می‌شوند. مثلا برای متوقف کردن حرکت ربات در هنگام برخورد عامل نهایی با یک شی. همچنین این سنسورها به ربات‌ها برای اعمال نیروی کافی برای بلند کردن جسمی از روی زمین و قرار دادن آن در جایی مناسب نیز کمک می‌کند. با توجه به این توضیحات می‌توان عملکرد آن‌ها را به چهار دسته زیر تقسیم کرد: 1- رسیدن به هدف، 2- جلوگیری از برخورد، 3- تشخیص یک شی.

.سنسورهای گرمایی (Heat Sensors):یکی از انواع سنسورهای گرمایی ترمینستورها هستند. این سنسورها المان‌های مقاومتی پسیوی هستند که مقاومتشان متناسب با دمایشان تغییر می‌کند. بسته به اینکه در اثر گرما مقاومتشان افزایش یا کاهش می‌یابد، برای آن‌ها به ترتیب ضریب حرارتی مثبت یا منفی را تعریف می‌کنند. نوع دیگری از سنسورهای گرمایی ترموکوپل‌ها هستند که آن‌ها نیز در اثر تغییر دمای محیط ولتاژ کوچکی را تولید می‌کنند. در استفاده از این سنسورها معمولا یک سر ترموکوپل را به دمای مرجع وصل کرده و سر دیگر را در نقطه‌ای که باید دمایش اندازه‌گیری شود، قرار می‌دهند.
e.
سنسورهای بویایی (Smell Sensors):تا همین اواخر سنسوری که بتواند مشابه حس بویایی انسان عمل کند، وجود نداشت. آنچه که موجود بود یک‌سری سنسورهای حساس برای شناسایی گازها بود که اصولا هم برای شناسایی گازهای سمی کاربرد داشتند. ساختمان این سنسورها به این صورت است که یک المان مقاومتی پسیو که از منبع تغذیه‌ای مجزا، با ولتاژ 5+ ولت تغذیه می‌شود، در کنار یک سنسور قرار دارد که با گرم شدن این المان حساسیت لازم برای پاسخ‌گویی سنسور به محرک‌های محیطی فراهم می‌شود. برای کالیبره کردن این دستگاه ابتدا مقدار ناچیزی از هر بو یا عطر دلخواه را به سیستم اعمال کرده و پاسخ آن را ثبت می‌کنند و پس از آن این پاسخ را به عنوان مرجعی برای قیاس در استفاده‌های بعدی به کار می‌‌برند. اصولا در ساختمان این سیستم چند سنسور، به طور همزمان عمل می‌کنند و سپس پاسخ‌های دریافتی از آن‌ها به شبکه‌ عصبی ربات منتقل شده و تحلیل و پردازش لازم روی آن صورت می‌گیرد. نکته مهم درباره کار این سنسورها در این است که آن‌ها نمی‌توانند یک بو یا عطر را به طور مطلق انداره‌ بگیرند. بلکه با اندازه‌گیری اختلاف بین آن‌ها به تشخیص بو می‌پردازند.
f.
سنسورهای موقعیت مفاصل : رایج‌ترین نوع این سنسورها کدگشاها (Encoders) هستند که هم از قدرت بالای تبادل اطلاعات با کامپیوتر برخوردارند و هم اینکه ساده، دقیق، مورد اعتماد و نویز ناپذیرند. این دسته انکدرها را به دو دسته می‌توان تقسیم کرد: .انکدرهای مطلق: در این کدگشا ها موقعیت به کد باینری یا کد خاکستری BCD (Binary Codded Decible ) تبدیل می‌شود. این انکدرها به علت سنگینی و گران‌قیمت بودن و اینکه سیگنال‌های زیادی را برای ارسال اطلاعات نیاز دارند، کاربرد وسیعی ندارند. همانطور که می‌دانیم به‌کار گیری تعداد زیادی سیگنال درصد خطای کار را افزایش می‌دهد و این اصلا مطلوب نیست. پس از این انکدرها فقط در مواردی که مطلق بودن مکان‌ها برای ما خیلی مهم است و مشکلی هم از احاظ بار فابل تحمل ربات متوجه ما نباشد، استفاده می‌شود.
ii.
انکدرهای افزاینده:این کدگشا ها دارای قطار پالس و یک پالس مرجع که برای کالیبره کردن بکار می‌رود هستند، از روی شمارش قطارهای پالس نسبت به نقطه مرجع به موقعیت مورد نظر دست می‌یابند. از روی فرکانس (عرض پالس‌ها) می‌توان به سرعت چرخش و از روی محاسبه تغییرات فرکانس در واحد زمان (تغییرات عرض پالس) به شتاب حرکت دوارنی پی برد. حتی می‌توان جهت چرخش را نیز فهمید. فرض کنید سیگنال‌های A و B و C سه سیگنالی باشند که از کدگشا به کنترل‌کننده ارسال می‌شود. B سیگنالی است که با یک چهارم پریود تاخیر نسبت به A. از روی اختلاف فاز بین این دو می‌توان به جهت چرخش پی برد.

منبع:http://imageha.ir



  



نوشته شده در تاریخ 91/12/13 ساعت 10:34 ص توسط نادین تِک


ترانسدیوسر

یک ترانسدیوسر بنا به تعریف ، قطعه ای است که وظیفه تبدیل حالات انرژی به یکدیگر را برعهده دارد ، بدین معنی که اگر یک سنسور فشار همراه یک ترانسدیوسر باشد ، سنسور فشار پارمتر را اندازه می گیرد و مقدار تعیین شده را به ترانسدیوسر تحویل می دهد ، سپس ترانسدیوسر آن را به یک سیگنال الکتریکی قابل درک برای کنترلر و صد البته قابل ارسال توسط سیم های فلزی ، تبدیل می کند .بنابراین همواره خروجی یک ترانسدیوسر ، سیگنال الکتریکی است که در سمت دیگر خط می تواند مشخصه ها و پارامترهای الکتریکی نظیر ولتاژ ، جریان و فرکانس را تغییر دهد ، البته به این نکته باید توجه داشت که سنسور انتخاب شده باید از نوع سنسورهای مبدل پارامترهای فیزیکی به الکتریکی باشد و بتواند مثلأ دمای اندازه گیری شده را به یک سیگنال بسیار ضعیف تبدیل کند که در مرحله بعدی وارد ترانسدیوسر شده و سپس به مدارهای الکترونیکی تحویل داده خواهد شد .
برای درک این مطلب به تفاوتهای میان دو سنسور انداره گیر دما می پردازیم : ترموکوپل و درجه حرارت جیوه ای ، دو نوع سنسور دما هستند که هر دو یک عمل را انجام می دهند ، اما ترموکوپل در سمت خروجی سیگنال الکتریکی ارائه می دهد ، در حالی که درجه حرارت جیوه ای خروجی خود را به شکل تغییرات ارتفاع در جیوه داخلش نشان می دهد .

منبع:http://imageha.ir



  





طراحی پوسته توسط تیم پارسی بلاگ